Euler - Maclaurin Formula

نویسندگان

  • Victor Kač
  • Kuat Yessenov
چکیده

a Bk({1− t}) k! f (t)dt where a and b are arbitrary real numbers with difference b − a being a positive integer number, Bn and bn are Bernoulli polynomials and numbers, respectively, and k is any positive integer. The condition we impose on the real function f is that it should have continuous k-th derivative. The symbol {x} for a real number x denotes the fractional part of x. Proof of this theorem using h−calculus is given in the book [Ka] by Victor Kač. In this paper we would like to discuss several applications of this formula. This formula was discovered independently and almost simultaneously by Euler and Maclaurin in the first half of the XV III-th century. However, neither of them obtained the remainder term

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Euler-Maclaurin Formula and Sums of Powers Revisited

Using the Euler-Maclaurin summation formula the strictly increasing convergence lim m → ∞ m j=1 j m m = e e − 1 is demonstrated.

متن کامل

Asymptotic Euler-Maclaurin formula for Delzant polytopes

Formulas for the Riemann sums over lattice polytopes determined by the lattice points in the polytopes are often called Euler-Maclaurin formulas. An asymptotic Euler-Maclaurin formula, by which we mean an asymptotic expansion formula for Riemann sums over lattice polytopes, was first obtained by Guillemin-Sternberg [GS]. Then, the problem is to find a concrete formula for the each term of the e...

متن کامل

Euler–Maclaurin summation and Schlömilch series

A method for analysing a class of divergent series is developed from the Euler– Maclaurin summation formula. The conditions that the summand must satisfy are explored, and a significant simplification is obtained for cases where the summation ranges over all integers. As an example, we consider the Ewald representation for Schlömilch series, and show that this includes Twersky’s dual series for...

متن کامل

Sum-integral Interpolators and the Euler-maclaurin Formula for Polytopes

A local lattice point counting formula, and more generally a local Euler-Maclaurin formula follow by comparing two natural families of meromorphic functions on the dual of a rational vector space V , namely the family of exponential sums (S) and the family of exponential integrals (I) parametrized by the set of rational polytopes in V . The paper introduces the notion of an interpolator between...

متن کامل

A trapezoidal rule error bound unifying the Euler–Maclaurin formula and geometric convergence for periodic functions

The error in the trapezoidal rule quadrature formula can be attributed to discretization in the interior and non-periodicity at the boundary. Using a contour integral, we derive a unified bound for the combined error from both sources for analytic integrands. The bound gives the Euler–Maclaurin formula in one limit and the geometric convergence of the trapezoidal rule for periodic analytic func...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007